
r ,'_ ,
.p

NASA Contractor Report

ICASE Report No. 89-30

181845

ICASE

EVALUATING LOCAL INDIRECT ADDRESSING IN SIMD

PROCESSORS

David Middleton

Sherryl Tomboulian

(NASA-CR-181845) EVALUATING LOCAL INDIRECT

ADDRESSING IN SIMD PROCESSORS Final Report

(ICASF) 20 p C_CL 09B

Contract No. NAS1-18605

May 1989

G3/oO

N90-I058I

Unclas

0233944

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

I /LSA
Nalional Aeronaulics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

Evaluating Local Indirect Addressing
in SIMD Processors*

David Middleton

Sherryl Tomboulian

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton VA 23665

Abstract

In the design of parallel computers, there exists a tradeoff between the number

and power of individual processors. The single instruction stream, multiple data

stream (SIMD) model of parallel computers lies at one extreme of the resulting

spectrum. The available hardware resources are devoted to creating the largest

possible number of processors, and consequently each individual processor must use

the fewest possible resources. Disagreement exists as to whether SIMD processors

should be able to generate addresses individually into their local data memory, or

all processors should access the same address. We examine the tradeoff between

the increased capability and the reduced number of processors that occurs in this

single instruction stream, multiple, locally addressed, data (SIMLAD) model. We

assemble the factors that affect this design choice, and compare the SIMLAD
model with the bare SIMD and the MIMD models.

1 Introduction

There is a tradeoff in the design of parallel computers between the number and power

of the individual processors. That is, the available budget of hardware resources can be

allocated to many simple processors or fewer more powerful ones. The single instruction

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in
Science and Engineering (ICASE}, NASA Langley Research Center, Hampton, VA 23665.

1

stream, multiple data stream (SIMD) model of parallel computers lies at one extreme

of the resulting spectrum z. Hardware resources are devoted to creating the largest

possible number of processors to the extent that individual processors lack independent

control units, instead performing identical operations on data in their local memories

according to instructions issued by a centralized controller.

Disagreement exists as to whether SIMD processors should be able to generate the

addresses for these accesses individually, or must use identical addresses to access their

memories. Several machines have been built using each model; for example, the MPP

and Thinking Machine's CM1 use common addresses, while the ILLIAC IV and the

CM2 allow for individual addressing [17,10,24,1].

We examine the consequences of including local addressing in the design of an

SIMD machine. We use the term SIMLAD (for "locally addressed data") to describe

SIMD machines in which the processors use local addresses and the term SIMCAD

(for "commonly addressed data") for those in which the same address is used by all

processors. The term MAMD has been used [2], but we prefer SIMLAD as better

distinguishing the facility from MIMD. We compare the abilities and costs of SIMLAD

with both SIMCAD and fine-grained MIMD designs. The goal is to establish a basis

for deliberateiychoosing whetherto include local addressing in SIMD designs, since it

appears that recent SIMD designs have provided local addressing as a by-product of

other design decisions.

This study is necessarily somewhat preliminary since fair comparison requires ex-

tensive study intwo directions. First, the hardware costs of local addressing depend

heavily on the design effort invested in optimizing VLSI circuits, and second, the

effectiveness of local addressing depends heavily on the effort invested in designing

algorithms to exploit this specific ability. Consequently, local addressing will likely

1The ILLIAC IV design, built under the supercomputer philosophy that hardware cost is negligible,
does not seem concerned with a hardware budget. However, in not having been constructed to its full

size, it provides support for this view.

appear significantly less attractive initially than its potential and so it is important

that local addressing be studied and exploited while there exist machine designs that

provide it.

It has been pointed out that the SIMCAD model is equivalent to a sequential ma-

chine having word lengths equivalent to the number of SIMD processors and including

some strange bit-permutation instructions corresponding to the SIMD machine's com-

munication operations [16,4]. Our concern is with efficiency, so that for example we

wish not to ignore multiplicative factors; thus we disregard such equivalence argu-

ments as failing to reflect the importance of the conceptual model of computation on

algorithm design and programming.

As a first step then, this paper attempts to assemble all the advantages and dis-

advantages of local addressing. Where possible these factors are quantified, but in

general they are used to indicate where the strengths of the different choices lie in

application or hardware design space. We separate the factors into the disadvantages

due to the fact that the processors, or PEs, consume more resources and so must be

less numerous, and the advantages due to the fact that the PEs become more powerful.

Word size is an important factor in the value of local addressing, since the local

addresses constitute an additional data type that would profit from wider than bit-

serial data paths. In SIMD designs generally, single bit word lengths are pervasive,

with other data types being implemented bit-serially, for two reasons. First, single

bit words match the original highly specific applications for which the machines were

intended. Second, bit serial arithmetic exchanges simplicity in the ALU for complexity

in the control unit [5], and since SIMD machines replicate the data paths and share the

control paths, this is an effective tradeoff. Wider data words provide two advantages

to the SIMLAD model. First, local address calculations, such as adding an index to a

base, use fewer operations than in bit-serial machines. Second, relatively complex data

structures, for which the advantages of SIMLAD over SIMCAD are more pronounced,

can be referenced with fewer addresses and correspondingly less address arithmetic.

We expect, however, that the one-bit word size will remain heavily favored and so do

not consider different word sizes at present.

2 Other work

Local addressing is neither new, having appeared in the ILLIAC IV [24], nor forgotten

[12]. The following designs provide local addressing: the ILLIAC IV, the SPHINX,

the CM2, the Blitzen, the GFll, the BSP. The following designs require common

addressing: the CLIP4, the GAPP, the MPP, the CM1, the HCL (a pyramid machine),

the DAP, the BVM.

:: :Several useful surveys Of SIMD machines have appeared recently and local address-

ing is prominent as a distinguishing characteristic. Tuck studies SIMD machines in

order to create portable languages suited to describing SIMD algorithms [30]; local

addressing of memory and of I/O ports are among the distinguishing characteristics he

uses. That study appropriately ignores constant multiplicative factors and so provides

a broader, less detailed view of SIMD designs.

Snyder presents a refinement of Flynn's taxonomy that mainly applies to the SIMD

diViSion [7,25]. His taxonomy basically distinguishes between multiple streams of data

values and multiple streams of data addresses' which directly differentiates SIMLAD

and SIMCA D designs.

Sanz and Cypher Study architectures and algorithms for image processing on mas-

sively parallel computers, mainly SIMD ones [22]. Local addressing, both for memory

and I/0: p0ris, isinciuded among the characteristics important to algorithm design. It

may be noted that of the nine SIMD machines they mention, only two, the SPHINX

and the CM2 provide local addressing: It is also noteworthy that they consider less

than 1 Kblt hf emory per PE to bein dei uate for algorithmdesign.

3 Costs

We consider the disadvantages of local addressing in terms of the increased consumption

by each PE of hardware resources, principally VLSI chip area. Larger PEs are slower,

but more importantly, the number of PEs drops.

In SIMCAD designs, the memories of many processors can share a single address-

decoder tree fed with an address from the controller. Adding local addressing to SIMD

processors involves providing each processor with a separate address-decoder tree and

a path to it from a location in the processor, that holds the address. We assume

this location is the ALU since that is general and involves minimal further hardware

additions.

Asymptotically, a decoder tree uses O(k) nodes to convert lg(k) address bits _ into

k enable lines controlling the storage area. Organizing the storage cells as a rectangle

with half the address bits enabling certain storage cells and the other address bits

selecting from among those, takes O(v/-n) nodes (and thus chip area) to enable a

specific storage cell according to the lg(n) address bits. Such analysis is inadequate

due to the wide variability that aspects of design and fabrication may produce in the

areas of nodes or the density of the layout.

The following examples demonstrate a likely range for the reduction in processor

numbers due to providing the PEs with individual address decoders. The PixelPlanes

project has built several SIMD graphics display computers [20]. In the PixelPlanes3

system, the address decoder on each chip occupied the same area as the storage (32

bits per processor) and ALU for about six processors, so adding local addressing to

PixelPlanes3 would reduce the number of processors by a factor approaching seven.

In PixelPlanes4, the address decoder occupied about three times the area of a single

processor, now containing 72 bits of storage, so that local addressing would reduce the

21g -- log2

number of processors by up to four. At the other end of the spectrum, consider a hypo-

thetical SIMD machine constructed around commercial memory designs. The address

decoding (and other control} logic surrounding the actual storage area in several recent

generations of such chips has remained at about 30% of the overall chip area, despite

an order of magnitude increase in memory capacity [6]. Thus, in SIMD designs where

memory capacity dominates the ALU in resource consumption, local addressing might

be expected to reduce the number of processors by at least 1.4.

These examples suggest that SIMLAD designs will have fewer processors than cor-

responding SIMCAD ones by a factor of between 1.4 and 7, and that the small penalties

occur in designs having large amounts of memory per processor.

This is important since the trend with SIMD machines, particularly offspring of

successful designs, is towards large increases in the memory associated with each PE.

PixelPlanes5 will have 256 bits per PE with a further 4 Kbits of backing store [8].

The Blitzen machine, an extension t0 the MPP which had 1 Kbits, is to have 64 Kbits

[17,21]. Thinl_ng:Machine's CM1 -h_:2 Kb|ts:per processor; the CM2 has 64 Kbits

[11,1]. DADO, Which grew from the Non-Von SIMD data-base machine, is expected to

use 2 Kbytes per processor, although that is predominantly instruction store [23,26].

However, the chip area consumed by gates performing useful work is often much

less than that consumed by the w|ring connections between them, especially if the large

driver transistors that are required to send signals through the wires with acceptable

speed are included 3. Therefore, even for SIMCAD designs, the princ|pal costs most

likely lie in the paths joining the address source, the decode tree, the storage cells

and the ALU. Minimizing the wiring costs requires placing each PE and its storage

close to the address decoder and the :latter close to the address source. This suggests

replicating the address decoder several times in each chip, especially as the density

3 Large emptyarea_ on a chip often arise from the inability Of various modules to fit together. Thus,

the storage of PixelPlanes PEs in long Strips rather than rectangles is likely much more important for

its reduction in fragmentation than it is for any affect it has on the size of the address decoder.

6

of integration continues to rise. From this perspective, the cost of SIMLAD becomes

the extent to which further replication of the decoder to provide one for each PE falls

below such an optimum.

In comparing SIMLAD and SIMCAD, we distinguish one-time costs, such as de-

sign time, from the inherent, repetitive, costs such as cycle time or chip area (with

the attendant yield). We consider the latter factors to be important. Design time

is a significant cost however, and attempts are usually made to reduce it, which is

unfortunate since subtle implementation decisions made during the design phase have

significant impact on the repetitive costs of the resulting design. Examples of these

design decisions include the layout of the decode tree_ the length and width of the

nodes in the decode tree (increasing one to reduce the other may worsen the node area

yet improve the overall fit of the nodes with each other), the length and width of the

storage area (which relates to the number and width of the words in each PE memory),

the available power consumption, the intended clock speed, the number and types of

the layers provided by the targeted fabrication process, and the attendant design rule

restrictions.

Each factor individually may alter the area cost considerably. This can be seen by

considering various memory cells available in the MCNC VLSI library [6]. For example,

dynamic and static memory cells using metal data paths differ in area by a factor of

1.8. Static cells using polysUicon paths differ in area from those using metal by a factor

of 1.2. (Furthermore, such publically available cells are significantly less area-efficient

than commercial memory designs [31].) That there are many inter-related factors,

each of which may alter the area by a factor of almost two suggests that considerable

design effort is required to search the design space for near or adequately optimal

implementations.

Thus, design costs pose a significant hurdle for SIMLAD designs. Until they are

considered worthwhile, the design investment required to reduce their cost reasonably

7

close to their potential (whatever it may be) will not be invested, possibly causing their

cost to remain prohibitive.

It may well be that local addressing has been provided in some recent SIMD ma-

chines as a by-product of other design decisions rather than as a deliberate increase in

the capability of PEs. Two factors support this interpretation. Algorithmic techniques

and language enhancements associated with the feature are lacking. In fact, there is

a significant speed penalty associated with the use of local addressing over common

addressing in the CM2. Furthermore, the use of external commercial memory chips

suggests that local addressing is a by-product of the need to increase the memory of

PEs while mitigating additional design time costs. (In one instance however, local ad-

dressing was added in response to customer pressure). Implementing local addressing

with external memories suffers significant time delays and area penalties associated

with the chip boundaries separating PEs from their memories.

:_
I

4 Uses

The advantages Of local addressing reduce to the increased utilization of the PEs. In

conventional SIMI) processing, variations in the operation of the PEs require separating

the PEs into groups, and sending each group its instructions while other groups are

disabled. Using local addresses as parameters to the instruction stream may allow the

PEs to be divided into fewer groups, reducing the time that PEs spend disabled.

As a first consequence, local addressing may improve a space-time product for

a fixed number of processors. The amount of resources for a given number of PEs

increases by the cost of the local addressing while the time for program execution de-

creases by the extent to which code sequences merge through the use of parameterized

addressing. As a second consequence, local addressing may improve the space-time

product for a fixed amount :ofhardw_e,, that:iS, for fewer PEs. If the utilization of

• _._;_ _ _i ---_

PEs increases by a factor of k by merging code sequences, then each actual SIMLAD

PE might simulate [kJ of the original PEs, taking no longer than the original set of

code sequences would require 4. Local addressing is not required for such simulation,

as is demonstrated by the concept of virtual processors as expounded by Thinking

Machines, but it does extend the use of virtual processors to more cases, as shown by

the load balancing example below.

It is recognized that evaluating different parallel computers requires the use of

appropriate algorithms for each. The effectiveness of SIMLAD designs relies on devel-

oping new parallel algorithms that do not require the independent operation of multiple

instruction streams but can exploit local addressing. This suggests that the power of

local addressing manifests in enabling PEs to manipulate individual data structures

with identical operations.

4.1 Data Structures

Local addressing allows individual PEs to use data structures that vary from PE to PE

depending on particular data or the previous actions performed by the individual PE.

Such structures include arrays and linked lists, accessed by local indices and pointers,

from which dequeues, trees and tables can be constructed.

One method for programming SIMCAD machines consists of enumerating all pos-

sible cases and issuing the appropriate instructions for each, one after another, while

the appropriate PEs for each case are enabled. Thus, for example, since a stack with

space for ten elements can be in one of eleven states (ignoring specific entry values), a

SIMCAD algorithm can use such a structure with only an elevenfold reduction in speed

(ignoring the overhead of enabling different PE groups [14]). This suggests that local

4 For a SIMLAD PE to simulate [k] SIMCAD ones, it should properly have [kj times the memory.
SIMCAD then becomes less the replication of address decoders to match PEs than the reduction of

PEs to match address decoders. Such a trend opposes the fine-grained _logic-in-memory _ aspect of the

SIMD philosophy.

9

addressing is more useful for algorithm design in SIMD machines with relatively large

memories, since those can exploit data structures that are too large to be simulated.

We examine various areas where individual data structures might enhance PE op-

eration.

4.2 Communication Operations

Communication among PEs provides an excellent arena for evaluating SIMLAD. An

essential and expensive part of parallel processing, communication in various forms has

been studied exhaustively for both SIMD and MIMD processors. Consequently, the

best known approaches for these other machine models represent fair targets against

which SIMLAD may be compared. The challenge is to invest comparable effort in

devising effective communication strategies for the SIMLAD model. The following is

a preliminary study; further research is in progress.

Communication operations can be characterized according to Something analogous

to the bind|ng times of the application's communication paths to the hardware connec-

tions between PEs. We divide communication operations into three broad categories.

In the first, the hardware connectivity corresponds to the pattern of communication

required by the target application: data movement in the problem occurs between im-

mediate neighbors in the hardware. An example wouldbe the 2D mesh communication

used in the image processing problems which initially motivated designs such as the

MPP. In these cases, local addressing is of no benefit.

The second category contains static communication patterns. These patterns do not

depend on the particular values being moved, yet are unrelated to the physical structure

of the PE connections. These patterns can be determined prior to execution in a

"compile-time" phase. In this situation, a method is needed to control the independent

movement Of messages over mult]pie:arcs]n t_he hardware network.

A table driven=approach has been deveI0ped that supports such communication in

10

t

_m

_m

I

|

I1

SIMCAD machines [28]. Given a mapping of the problem's graph nodes into the PEs,

each arc in the problem graph can be supported by a sequence of physical connections

between the corresponding PEs. This description of each such path is distributed

through the intermediate PEs so that each knows only the next PE in line. The

different arcs in the problem graph are laid out and initiated so as to avoid collisions.

The method involves a global clock, each tick of which corresponds to the progress of

each message by one step along its path. Each PE, which may lie on several paths,

contains a table in which each entry indicates, at the given clock tick, the neighbor that

should receive the message currently held in the PE. Local addressing of memory is

unnecessary for table access since all PEs sequentially access their tables in time with

the clock; nevertheless, local addressing of I/O ports allows for denser representations

of the tables which is important since table size is a limitation on this method.

Local addressing on the I/O ports noticeably improves this method. Since neighbor

addresses are part of the SIMCAD instruction stream, each clock tick contains a minor

cycle that iterates through each possible communication direction. Local addressing

of neighbors, that is I/O ports, improves this method by the degree of connectivity

among the PEs: this is a factor of 4 in a two dimensional mesh and a factor of 12 in

a hypercube of 16K nodes. The hardware costs of decoding a local address of two or

three bits would be negligible in comparison with the interface hardware.

Sorting operations represent a common benchmark for communication systems,

although Potter suggests that sorting is less appropriate than associative processing

techniques for SIMD algorithms [18,19]. Many sorting algorithms can be viewed as a

fixed permutation of message holders with PEs conditionally exchanging the contents of

two holders as they pass through [3,15]. Such algorithms fit in the second category since

at a low level view, the message holders repeatedly undergo a fixed regular movement

independent of their contents; only at a higher level are the messages seen as following

irregular paths to arbitrary destinations.

11

The third category contains dynamic communication patterns in whlch the path-

ways are determined as the messages travel. This category includes operations where

PEs calculate messages' destinations individually (perhaps to implement fault tolerant

features). Various supplemental factors may have an impact on these kinds of opera-

tions: whether PEs may be sources or destinations for multiple messages, whether all

PEs must participate in the operation and the kind of indexing used to label the PEs

for calculating destinations. The third_categ0ry :di_ffers from the second in that the

actual communications between PEs are not predictable before the operation begins.
. .E

With dynamic, run-tlme, routing arises the p_si_ility of colilslon_: two messag_

may, at the same time, need either to enter one PE or to leave a PE by the same

path. MIMD computers handle such collisions by using buffering within the nodes.

Local addressing enables SIMD machines to perform similar buffering through the use

of locally addressed queues. Buffer overflow can be handled With similar techniques in

each case.

As in the second category, local addressing of I/O connections simplifies the dy-

namic routing involved by removing the need for the controller to specify instructions

separately for communication occurring in each separate direction.

I

I

=_
i

I

4.3 Computation models

SIMD PEs having individual data structures can implement new mechanisms on which

effective algorithms might be based. (This study is concerned with efficient operation

rather than questions like Turing equivalence).

Local addressing enables PEs to perform (independent) function evaluations by

table lookup. For example, consider two dimensional hexagonal cellular automata

such as are used to study fluid dynamics [27]. Each node in such a model determines

at each step whether particles leave that node along any of the edges depending on

the particles that just arrived along those edges. This involves computing slx boolean

12

m

z

functions, each of (the same) six boolean inputs. A 64 element table in each SIMLAD

PE would consume fewer than 400 bits and would operate about 64 times faster than

a SIMCAD simulation, assuming the different overheads for each approach are similar.

Since local addressing probably reduces the total number of PEs by less than eight,

mapping eight problem nodes into each SIMLAD PE will most likely yield a faster

solution for a given problem size and hardware budget than a SIMCAD machine would

yield.

Given that the PEs' operations are table-driven, it is not necessary that the tables

be identical across PEs, although differences might require some translation of the

values that pass between the PEs.

Local tables can also be used to implement finite state machines and, in conjunction

with other local data structures, push down and linearly bounded automata 5. For such

a model, all PEs simultaneously transform an <input, oldstate> pair into an address

within the table, dereference that location to yield an output and a new state (and a

stack or head operation if necessary), and then use those values appropriately.

One technique used in SIMD machines involves creating several "virtual" PEs in

each physical PE [11]. The physical PEs identically support each virtual PE in turn,

and some advantages may accrue through pipelining effects. Local addressing allows

some variability in the operation of the different virtual PEs which can be used to

implement restricted load balancing. For example, in the calculation of Mandelbrot

diagrams, the identical iterative computation is repeated for all gridpoints in the com-

plex plane. Since there are large variations in the number of iterations in different

regions, load-balancing can be accomplished by mapping widely separated points and

the associated virtual PEs into a single physical PE [29]. A PE finishing one point

early can immediately proceed with the next one it holds.

5 Obviously, this ignores the fact that the resources are finite. Such an assumption is often made to

allow the separation of algorithm development from memory size considerations.

13

Data flow modelsof computation canbe implemented by using local arrays to hold

queuesof input tokens; this is in addition to any useof buffering occurring during the

communication of tokens between PEs. It is worth noting however, that the token

queuesin the Manchester tagged datafl0Wcomputer can hold at least 64K tokens, so

that data flow modelsof computation may well be impractical for SIMD PEs because

of the spacecost [9].

In the abstract, local addressingis a step towards independent instruction streams.

Each PE can implement a local instruction addressregister pointing to a list of local

instructions. The host broadcastswhat is effectively microcode for each instruction

after enabling those PEs whose register points to the given instruction. Specificsof

the instruction set (for example, whether enabledprocessorsare executing a common

program module, or a common instruction such as a floating point addition, that is

RISC or CISG) is a subsidiary issue. In practice however, such simulation is likely to

be ineffective. The memory required for holding local programs probably dwarfs the

hardware required to decode instructions locally to the extent that a straightforward

MIMD design would better exploit the hardware resources.

In conclusion, SiMCAD machines are unable to make effective use of a rich assort-

ment of algorithmic techniques which have been studied extensively for conventional

computers, ones that exploit data structures. Local addressing extends the standard

SIMD programming techniques of associative or data-parallel processing by making

these techniques also available.

5 Conclusion

Adding local addressing to SIMD processors increases the hardware consumed by each

PE and consequently reduces the total number of processors (for a given hardware

budget). This reduction is not large however, most likely being less than eight and

14

probably less than three or four if local memories exceed 1 Kbit.

As a somewhat separate issue, local addressing of neighbors in input/output instruc-

tions noticeably improves some communication operations for negligible hardware cost

in comparison to that required to drive signal wires between PEs.

SIMLAD designs improve with respect to SIMCAD ones as memory size increases,

for two reasons. First, the fraction of the total PE devoted to the additional de-

coding hardware decreases, so that the reduction in number of PEs tends to drop to

around two. Second, increasing the memory that can be independently accessed in-

creases the size of the data structures that local addressing provides, increasing the

advantage provided with respect to the limitations caused by common addressing in

the SIMCAD design.

Increasing memory size at the same time reduces the marginal cost of local in-

struction storage and decoding and so at some point, an MIMD approach becomes

preferable to either SIMD approach. The requirements of the FFP machine and the

DADO machine, two fine grained MIMD computers, suggest that instruction storage

may require at least several kilobytes [13,23,26]. Further hardware is required for local

instruction decoding, so a useful niche may exist for SIMLAD designs among parallel

processors, when they are classined by the amount of memory provided with each PE.

This study is preliminary in that more detailed research is required in two separate

directions. Efforts in VLSI design and layout are needed to reduce the hardware con-

sumed by providing PEs with their own address decoding mechanism. Algorithms need

to be developed that exploit the opportunities afforded by local addressing within the

data-parallel realm of single instruction stream execution. Communication operations

provide a reasonable target application within which local addressing may be studied.

Acknowledgements

The authors would like to thank several people for useful discussions, including

John Poulton and Kye Hedlund at UNC Chapel Hill, Jothy Rosenberg at Duke Uni-

15

versity, Wayne Detloff MCNC, Guy Steele, Bradley Kuzmal and others at Thinking Ma-

chines, and Dennis Martin of Halcyon Corporation (chip packaging).

References

[1] CM2 Manual, Thinking Machines Corporation, i988.

[2] [Use Of MAMD For Local Addressing], Second Symposium on the Frontiers of Massively

Parallel Computation, in preparation, Virginia, October 1988.

[3] K. E. Batcher, Sorting Networks And Their Applications, The Proceedings of AFIPS

1968, pp. 307-314:

[4] K. Batcher, Keynote Address, First Symposium on the Frontiers of Massively Parallel

Scientific Computation, Maryland, September I986

[5] G. A. Blaauw, F. P. Brooks, Computer Architecture, two-volume work by Addison-

Wesley in 1990, (in preparation).

[6] W. Detloff, VLSI designer, Microelectronics Center of Nth. Carolina, personal commu-

nication, May 1987.

[7] M. J. Flynn, "Some Computer Organizations And Their Effectiveness", IEEE Transac-

tions Computers, Volume C-21, No. 9, September 1972, pp. 948-960.

[8] H. Fuchs et. al, "Curved Surfaces and Enhanced Parallelism In Pixel-Planes", Computer

Science Technical Report, UNC Chapel Hili: 1988.

[9] J. R. Gurd, C' C:Kirkham, I. Watson, "The Manchester Prototype Data.flow Com-

puter", CACM, Volume 28, No. 1, January 1985, pp. 34-52.

[10] w. Hinis, "The Connection Machine", MIT Press, Cambridge, Mass, 1985.

[11] W. Hillis, G. steele, "Data Parallel Algorithms", CACM, Volume 29, N o. 12, December

1986, pp. 1170-1183,

[12] B. Kuzmal, "Simulating Applicative Architectures On The Connection Machines", Mas-

ters Thesis, MIT Department of Electrical Engineering and Computer Science, June

1986.

[13] G. Mag6, D. Middleton, "The FFP Machine:- A Progress Report", 1984 International

Workshop on High-Level Computer Architecture, May 1984, pp. 5.13-5.25.

16

T

[14] D. Middleton, "Implementing Nested Conditional Statements In SIMD Machines",

ICASE Report No. 89-27, NASA CR-181832, April 1989.

[15] D. Nassimi, S. Sahni, "Benes Network And Parallel Permutation Algorithms", IEEE

Transactions on Computers, Volume C-30, No. 5, May 1981.

[16] D. Parkinson quoting C. A. 1%. Hoare in a tutorial, Second Symposium on the Frontiers

of Massively Parallel Computation, Virginia, October 1988.

[17] J. L. Potter, "The Massively Parallel Processor", The MIT Press, 1985.

[18] J. L. Potter, "Programming the MPP", in "The Massively Parallel Processor" edited

by J. L. Potter, 1985, The MIT Press, pp. 218-229.

[19] J. L. Potter, "Associate Data Structures For Massively Parallel Computers", Second

Symposium on the Frontiers of Massively Prallel Computation, Virginia, October 1988.

[20] J. Poulton, H. Fuchs, J. Austin, J. Eyles, J. Heinecke, C. Hsieh, J. Goldfeather, J.

Hultquist, S. Spach, "PIXEL-PLANES: Building a VLSI-Based Graphic System", Com-

puter Science Press. 1985 Chapel Hill Conference on VLSI, May 1985, pp. 35-60.

[21] J. Reif, Duke University, personal communication, Sept. 1987.

[22] J. L. C. Sanz, 1%.E. Cypher, "The Prospects For Building And Programming Massively

Parallel Image Processing Architectures", IBM Research Report RJ 69.31, April 1988.

[23] D. Shaw, "The NON-VON Supercomputer", Computer Science Technical Report.

Columbia University, August 1982.

[24] G. H. Barnes, 1%. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, R. A. Stokes, "The

ILLIAC IV Computer", IEEE Transactions on Computers, Volume C-17, 1968, pp.

746-757.

[25] L. Snyder, "A Taxonomy of Synchronous Parallel Machines", Proceedings 1988 Inter-

national Conference on Parallel Processing, August 1988, pp. 281-285.

[26] S. Stolfo, D. Miranker, "DADO: A Parallel Processor for Expert Systems", Proc. 1984

International Conference on Parallel Processing, August 1984, pp. 74-82.

[27] T. Toffoli, N. Margolus, "Cellular Automata Machines: A New Environment for Mod-

eling" the MIT press, 1986.

17

[28] S. Tomboulian, "A System for Routing Directed Graphs on SIMD Architectures",

ICASE Report No. 87-14, NASA CR-178265, March 1987.

[29] S. Tomboulian, "Indirect Addressing and load Balancing for faster solution to the Man-

delbrot set on SIMD Architectures", Fifth Annual Massively Parallel Symposium ,

Columbia, April 1989, and ICASE Report 89-33, NASA CR-181847, May 1989.

[30] R. Tuck, "An Optimally PortableSIMD: Programming Language", Second Symposium

on the Frontiers of Massively Parallel Computation, Virginia, October 1988, and Com-

puter Science TR88-048, UNC Chapel Hill.

[3].] P_. A. Wagner, personal communication.

E

==

18

J

r

NalO'_ll Aercy'_alcs a_cl
_.ace A_r.-.,n,s_,alol

1. ReportNo.
NASA CR- 181845

ICASE Report No. 89-30

4. Title and Subtitle

Report Documentation Page

2. Government Accession No.

EVALUATING LOCAL INDIRECT ADDRESSING

IN SIMD PROCESSORS

7. Author(s)

David Middleton

Sherryl Tomboulian

9. PerformingOrganizationName and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

....-VA 5-:: 2....12__gency NaZ_e_ #d_dre:_s

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA ' 23665-5225

3. Recipient'sCatalog No.

5. Report Date

May 1989

6. Performing Organization Code

8. Performing Organization Report No.

B9-30

10. Work Unit No.

505--90-21-01

11. Contract or Grant No.

NASI-18605

13. Type of Reportand Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technlcal Monitor :

Richard W. Barnwell

Final Report

16. Abstract

In the design of parallel computers, there exists a tradeoff between the

number and power of individual processors. The single instruction stream,

mulitple data stream (SIMD) model of parallel computers lles at one extreme of

the resulting spectrum. The available hardware resources are devoted to

creating the largest possible number of processors, and consequently each

individual processor must use the fewest possible resources. Disagreement

exists as to whether SIMD processors should be able to generate addresses

individually into their local data memory, or all processors should access the

same address. We examine the tradeoff between the increased capability and the

reduced number of processors that occurs in thls single instruction stream,

multiple, locally addressed, data (SIMLAD) model. We assemble the factors that

affect this design choice, and compare the SIMLAD model wlth the bare SIMD and
the MIMD models.

17. Key Words (Suggestedby Author(s))

SIMD computers,

local addressing,

indirect addressing

19. SecurityClassif. (of this report)

Unclassifled

18. DistributionStatement

60 - Comp. Oper.& Hardware

61 - Comp. Prog. & Software

Unclassified - Unlimited

_. Security Cla_if. (of thi_ge)

Unclassified

21. No. of pages

19

22. Price

A03

NASA FORM 1626 OCT86

NASA-Langley, 1989

